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1 | OVERVIEW

Machine learning (ML) has been increasingly used for
tackling various diagnostic, therapeutic, and prognostic
tasks owing to its capability to learn and reason without
explicit programming [1]. Most developed ML models
have had their accuracy proven through internal valida-
tion using retrospective data. However, external validation
using retrospective data, continual monitoring using pro-
spective data, and randomized controlled trials (RCTs)
using prospective data are important for the translation of
ML models into real‐world clinical practice [2]. Further-
more, ethics and fairness across subpopulations should be
considered throughout these evaluations.

2 | EXTERNAL VALIDATION

Different from internal validation, which evaluates the
performance of ML using a subset of the original datasets,
external validation assesses ML models in contexts that may
vary subtly or considerably from the one in which they were
developed [3]. External validation serves to rectify inflated

estimates of ML capabilities owing to overfitting and guar-
antees the generalizability and transportability of ML mod-
els across diverse populations [4]. For external validation,
researchers can leverage the abundant resources of publicly
accessible databases such as PhysioNet [5]. Three external
validation scenarios are recommended after identifying a
suitable database with a sufficient sample size to guarantee
testing robustness [6]. The first involves directly deploying
the trained MLmodels on external data to simulate a brand‐
new scenario without previous data [6]. The second entails
using a large training data set from the new scenario to fine‐
tune the developed models, simulating that ample data have
been collected in the external context [7]. The third scenario
represents an intermediate situation wherein new data are
gradually fed into the ML models to simulate a scenario
where the models are deployed in a new setting, new
data are incrementally collected, and the models are up-
dated iteratively with the newly collected data [8]. Most
existing studies have focused on the direct deployment of
ML models for diagnostic, therapeutic, and prognostic tasks
[9]. Holsbeke et al. [10] deployed previously published
diagnostic ML models for detecting adnexal mass malig-
nancy across multiple medical centers in different countries
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with different population characteristics. For external
validation of therapeutic ML models, a pertinent reference
is a study investigating the survival benefits of adjuvant
therapy in breast cancer where researchers evaluated ML
models, which were originally developed using popula-
tions from the United Kingdom, in clinical settings in the
United States [11]. In the realm of prognostic tasks, Clift
et al. [12] offered a comprehensive approach to externally
validate ML models in the context of predicting the 10‐year
risk of breast cancer‐related mortality, detailing methods
for sample size calculation, population identification, out-
come definition, and performance evaluation. In addition
to assessing model performance, similarity between the
original training datasets and external validation datasets
can be quantified to enable the elucidation of performance
degradation and further identify potential avenues for
model enhancement [13].

3 | CONTINUAL MONITORING

Following large‐scale external validation using retro-
spective data, the subsequent step in implementation is
prospective evaluation in the specific setting where an
ML model is to be deployed [14]. Specifically, ML models
receive prospective data, make predictions accordingly,
and are evaluated within a predefined time frame [14].
Compared with the first step, continual monitoring is
used to identify data distribution drift, control model
quality, and trigger system alarms when an ML model
deviates from its normal behavior in the target setting
[15]. Because the operation and monitoring of ML
models are mainly conducted by clinical professionals,
developers should focus on translation of the developed
ML models into a user‐friendly clinical practice. The first
aspect is the operation of ML models in an offline hos-
pital system where allocated computation resources
would be limited for low latency in responding to other
functions inside the system. The second aspect is the
development of a secure and privacy‐aware maintenance
method for quickly addressing potential technical col-
lapses while minimizing direct access to patients' private
data. The last aspect is the development of a user‐friendly
interface such as an Android app [16] or web‐based
software [17] that facilitates the use of ML models by
health care professionals and comprehends their sug-
gestions. It should be emphasized that the application of
ML in a prospective clinical setting should be designed to
operate independently from, and not interfere with, ex-
isting clinical decision‐making processes. This precau-
tion is necessary to avoid any potential adverse impact on
the existing health care quality. Exemplary continual
monitoring of therapeutic ML models can be seen in the

work of Wissel et al. [18]. Those authors conducted a
prospective, real‐time assessment of ML‐based classifiers
for epilepsy surgery candidacy at Cincinnati Children's
Hospital Medical Center. To mitigate any risks associated
with ML classifiers, patients who were deemed appro-
priate surgical candidates by the algorithm were sub-
jected to manual review by two expert epileptologists,
with final decisions on their surgical candidacy con-
firmed via a comprehensive expert chart review. A crit-
ical insight from the study was that effective monitoring
necessitates a synergistic collaboration between clini-
cians, who provide essential medical expertize, and
information technology professionals, who contribute
research and operational knowledge [19, 20]. Assuming
that an ML tool demonstrates accurate prospective
diagnostic capabilities in the target setting, its developers
should pursue approval for further RCTs from adminis-
trative ethics committees.

4 | RANDOMIZED CONTROLLED
TRIALS

The last step toward the real‐world implementation of ML
tools is classic four‐phase RCTs. To ensure safety in real‐
life scenarios, absolutely ML‐based interventions are likely
to be avoided. We recommend designing RCTs to compare
the accuracy and diagnosis time for clinicians with
ML models (intervention group) and without ML models
(control group) [21–23]. For instance, He et al. [24]
implemented RCTs to demonstrate that ML‐guided
workflows reduced the time required for sonographers
and cardiologists in the diagnoses of left ventricular
ejection fraction. Specifically, the first step in RCTs is to
seek ethical approval from an institutional review board to
ensure that the RCTs comply with ethical standards and
regulations. Then, researchers can proceed with Phase I of
the clinical trial to assess safety (whether the introduction
of an ML model distracts clinicians and impairs their
diagnoses) and to identify specific scenarios in which
ML should be used. In Phase II, a few hundred patients
are recruited to assess whether statistically significant
improvements result from the use of ML tools in clinicians'
diagnoses. In Phase III, several hundred or even several
thousand patients are recruited to validate the safety and
effectiveness of the ML tool, demonstrating its superiority
over other existing solutions. If the ML tool receives
approval from the administrative agency after Phase III,
researchers can then investigate its effectiveness and safety
in a wider range of patients in Phase IV. Upon demon-
strating efficacy through rigorously conducted RCTs, ML
tools can receive approval from national regulatory agen-
cies such as the US Food and Drug Administration (FDA)
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for commercialization [25]. A paradigmatic illustration of
RCTs for diagnostic ML models can be found in the
research by Titano et al. [26]. Those authors developed
three‐dimensional convolutional neural networks to diag-
nose acute neurological events using head computed
tomography images. The efficacy and efficiency of ML
models were subsequently validated in a randomized,
double‐blind, prospective trial. For therapeutic ML models,
we suggest referring to Nimri et al. [27]. The researchers
conducted multicenter and multinational RCTs to com-
pare ML with physicians from specialized academic dia-
betes centers in optimizing insulin pump doses. In the
realm of prognostic ML models, researchers from the
Mayo Clinic implemented RCTs to assess the effectiveness
and efficiency of ML models in predicting 1‐year occur-
rence of asthma exacerbation [28]. A detailed guideline for
conducting RCTs on ML for health care could benefit
from the FDA's Policy for Device Software Functions
and Mobile Medical Applications [29], which includes
specific provisions for medical applications that apply ML
algorithms [30].

5 | TOWARD REAL ‐WORLD
DEPLOYMENT

Alongside population‐level evaluations, there has been
burgeoning awareness about the ethical implications of
ML models, which have been revealed to diagnose, treat,
and bill patients inconsistently across subpopulations [31].
Therefore, it is imperative to ensure equity of patient
outcomes, model performance, and resource allocation
across subpopulations in the real‐world deployment of ML
models [31–33]. Thompson et al. [34] proposed a reference
framework to mitigate ML biases using two recalibration
modules. The first module adjusted the decision cutoff
threshold for subpopulations affected by bias, and the
second recalibrated model outputs, enhancing their con-
gruence with the observed events. Chen et al. [31] sys-
tematically summarized the path toward deployment of
ethical and fair ML in medicine, which includes a diverse
subpopulation collection using federated learning, fairness
principles, operationalization across health care ecosys-
tems, and independent regularization and governance of
data and models to avoid disparities. Apart from various
performance assessments, clinicians' endorsement and
patients' approval of ML models should be thoroughly
integrated into the evaluation processes [31, 35].

In this commentary, we elucidate three indispensable
evaluation steps toward the real‐world deployment of
ML within the health care sector and provide examples
of diagnostic, therapeutic, and prognostic tasks. In light
of these, we encourage researchers to move beyond

retrospective and within‐sample validation and toward
the practical implementation at the bedside rather than
leaving developed ML models buried within the archived
literature.
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